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ABSTRACT

We use the magneto-frictional method for computing force-free

fields to examine the evolution of the magnetic field of a line dipole,

when there is relative shearing motion between the two polarities. We

find that the energy of the sheared field can be arbitrarily large

compared with the potential field. We also find that it is possible to fit

the magnetic energy, as a function of shear amplitude, by a simple

functional form. The fit parameters depend only on the distribution of

normal field in the photosphere and the form of the shearing

displacement. They show that the energy is relatively more enhanced if

the shear occurs: (1) where the normal field is strongest; (2) in the

-' inner region of the dipole, near the axis; or (3) over a large fraction of

the dipole area.

bib,

I. INTRODUCTION

Stressed coronal magnetic fields play a key role in solar activity,

providing the energy for solar flares and possibly for related activity

* such as surges and coronal mass ejections. (See, for instance, Priest

1982.) By "stressed," we mean that the coronal magnetic field is not

current-free so that it is in a higher energy state than the corresponding

*, magnetic field with the same normal magnetic field at the photosphere

". but without coronal currents. It is therefore important to try to

understand the way in which such stressed magnetic-field

configurations can develop and to estimate the "free energy" in such

configurations. The "free energy" is the excess of the magnetic-field
A?
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energy of the current-carrying field above that of the corresponding

current-free field.

There are several ways in which currents can develop in coronal

magnetic-field configurations. One possibility is that a twisted flux tube

emerges from below the photosphere. Another possibility is that two or

more distinct flux systems are adjacent to each other, so that current
sheets develop at the boundaries. The third possibility is that a field

initially in a current-free state is stressed by photospheric motion. This

is the possibility that we consider in this article.

Unfortunately, we do not yet have systematic data concerning the

* horizontal velocity fields in the photosphere of solar active regions. The

new development of "correlation tracking," that has been demonstrated

on a short span of data acquired during the Spacelab II mission (Simon

et al. 1988), holds out the promise that such data can be acquired by

spacecraft in the future. Such data would be most valuable in

furthering our understanding of solar activity.

Nevertheless, there is circumstantial information indicating that

horizontal velocity fields do play a significant role in stressing coronal

magnetic fields. For instance, the occurrence of homologous sequences

* of flares indicates that, once a flare has occurred and returned the
'." k."

magnetic field to something approximating a current-free state, the field

is again stressed so that another flare can occur, and so on. (See, for

instance, Svestka 1976.) The similarity of flares in such sequences

argues against attributing the re-stressing of the field to the eruption of

new magnetic flux. It seems more likely that the progressive re-

stressing is to be attributed to a steady photospheric horizontal velocity

field.
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Evidence that the magnetic fields of active regions are stressed,

whatever the reason, comes in several different forms. Photospheric

vector magnetograms often indicate a high degree of shear in the

vicinity of magnetic neutral lines (e.g., Hagyard 1985). Indirect evidence

of this shear at slightly higher altitudes is provided by dark structures

. observed in Ha , such as active region filaments, which are known to be

associated with large "two-ribbon" flares (e.g., Athay et al. 1986;

Klimchuk 1987). One interpretation of the UVSP C IV Dopplergram

data from the Solar Maximum Mission spacecraft leads to the

conclusion that shear may be present in the transition region (Athay et

*al. 1986). And finally, soft X-ray loops, such as those observed by Skylab,

.. are suggestive of shear in the corona (e.g., Webb and Zirin 1980).

For these reasons, we are particularly interested in the coronal

magnetic-field configurations that develop above photospheric regions

-. containing a linear magnetic dipole, when there is a shear-like

displacement on opposite sides of the dipole. In examining this

problem, we assume that the density and pressure of the coronal gas are

sufficiently small that the magnetic field is unaffected by gravitational

and pressure forces. However, the electrical conductivity of the coronal

O" gas will still be sufficiently high that the magnetic field is "frozen" into

the coronal plasma. In such situations, the magnetic field will be force-

free, and we are therefore faced with the problem of calculating force-

. free magnetic-field configurations (Priest 1982).

A procedure for calculating such configurations was developed

some time ago by Sturrock and Woodbury (1967), and one example of a

line dipole configuration was calculated at that time. We present in this

10 - - - -'
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article a series of calculations which we have make using an improved

computational procedure.

The quantity of greatest interest is the total magnetic energy in

such a sheared magnetic-field configuration. This will of course be a

function of the magnitude of the shear. We find that the results of our

-" detailed calculations may be fit by a simple formula that may prove

useful in estimating the amount of energy in similar configurations.

I1. FORCE-FREE-FIELD CALCUIATIONS

In a recent article, Yang, Sturrock, and Antiochos (1986) have

*proposed a new method for computing force-free magnetic-field

configurations that they term the "magneto-frictional method" (see also

Chudura and Schluter 1981; Craig and Sneyd 1986). This procedure has

been applied to the present problem. The magnetic field is expressed in

terms of Clebsch variables

'.Va V, (2.1)

where a and [ are assumed to be of the form

a = a(x,y), 3= z - '(x,y). (2.2)

We see that

Bx=-Doc By =-x x , Bz= - + aa(2.3)
ay ax ax 0y ay ax

.,
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Since a and f are each constant along a field line--because the

divergence of the field must vanish--it is clear that the function y(x,y)

A shows how each field line is displaced in the z direction.

In this model, the plane y = 0 is taken to be the photosphere, and

the z axis is the axis of the line dipole. Hence the normal component of

the photospheric magnetic field is By(x,O).

We consider two different distributions of flux in the photosphere.

The first is given by

c aI(x,O) = exp(- x 2 / x02 ) (2.4)

* so that

.= 2 exp(- x2 / X02 ). (2.5)"iByi(X,0) x° (25

VX0

Figure 1 shows how Byl(x,O) varies with distance from the dipole axis for

v the adopted value xo = 4.

Klimchuk (1987) has recently pointed out that active region fields

are not generally distributed in this way, however. Instead of gradually

'I increasing in strength away from the dipole axis, the normal field

6component tends to commence abruptly at some finite distance from the

axis. This results in a "weak field corridor" that separates the opposite

I polarity strong fields of the active region. Similarly, the normal field

- " tends to end abruptly at the perimeters of active regions, rather than

gradually falling to zero. We therefore consider a second, more realistic

field distribution, also shown in Figure 1 and given by

'p%
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d+- I(xl_<

2 E12-cos (Ixl-c) ++d+- c< IxI <c+l

(4'\2lxn
a 2(x,O)= d+-- -x+c+d+l+- c+1< Ixl _<c+d+l

( Ir) lxi 71

-cos (xl-c-d) !+- c+d+l< Ixi I c+d+2

0 lxI > c+d+2

(2.6)

so that

0 IxI < c

sin[(lxl - C)c< lxi 5c+1

By2(X,O) = 1d+-x 1 c+1< Ixi 1 c+d+l
sin [(lx - c - d) c+d+I < I x < c+d+2

0 I x I > c+d+2

(2.7)

Here, c is the corridor half-width and d+2 is the size of the strong field

*" region, or "plage." We choose c = 1 and d = 4. Units are arbitrary, but

correspond to approximately 104 km on the Sun. The field has been

normalized so that both distributions contain the same amount of

, positive and negative flux.

To study the effects of stress in the field, we assume there is a

region of the photosphere within the band I x I x, that is subject to a

shearing motion parallel to the z axis. There is no shearing motion

outside that band. Our specific assumption is that
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0. 8

(x,O) Zmax sin (Xx sin X xI 8xl)rX, J1 (7-) 1(2.8)
0 1I >xJ

Hence Zmax is a measure of the relative shear of the two parts of the

dipole. Figure 2 shows the shape of this shear function for the three

cases x, = 2, 4, and 8. In two cases the shear is concentrated toward the

central part of the dipole, and in the third it is more evenly distributed.

For the case x, = 2, the shear occurs almost entirely within the weak

field corridor of By2 (x,O), and we do not examine this uninteresting

-. possibility.

To calculate a force-free field using the magneto-frictional

- -'"method, one assumes photospheric boundary conditions such as those

above and specifies an initial guess at the overlying coronal field. This

field is then allowed to relax subject to the Lorentz forces and to a

ficticious friction force which makes the relaxation well-behaved. At all

Mtimes cz and y are held constant on the boundary.

.- In carrying out the calculations, it is necessary to introduce an

artificial outer boundary within which the entire magnetic field is

% contained. The numerical "box" we have thus adopted has dimensions

of 80 in the x-direction and 60 in the y-direction. (In fact, we use only

'4, half of this box since the x = 0 plane is a plane of symmetry.) At the

-, outer boundary we impose the condition a = 0, which is equivalent to

assuming that the boundary is "superconducting." The boundary is

sufficiently distant, however, that it has negligible effect on total field

4.
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energy. At the x =0 plane we require only that cc be symmetric and y be

antisymmetric, and we allow the field lines to slip.

The relaxation to a force-free state is performed on a finite-

difference grid using an explicit, second-order differencing scheme. To

adequately resolve the field with a manageable number of grid points we

have adopted a nonuniform grid having cells of equal size in the region

0< x <10, 0 < y < 10, and cells of exponentially increasing size in the

region beyond. The minimum and maximum cell dimensions are 0.5

and 2.3, respectively (except in the models with x1=2, where the

minimum dimension is 0.33).

* The rate of relaxation is enhanced considerably by performing the

calculation in three separate stages--first using a coarse grid and then

mapping onto successive grids of increasingly finer resolution. The

field so obtained is nearly force-free field within just a few hundred
iterations. We nonetheless allow our models to run for at least 5000

iterations to achieve the highest degree of accuracy. At the end of the

calculations the field and current are aligned to within a fraction of a

degree, and the energy changes by only one part in 106 during each

iteration.

In principle, the final equilibrium configuration may not be

unique, since there can be other configurations--with more complicated

topologies, perhaps including "magnetic islands"--that satisfy the same

6 boundary conditions. We find, in practice, that our procedure selects the

-" simplest, lowest energy state accessible to the field for the given

boundary conditions. Unwanted topological complexities are eliminated

*. by numcrical dissipation inherent in the computations.

'%%

-I l"k _I#



0 10

It is worth noting that the computer code used for the present

study was developed independently of that used by Yang, Sturrock, and

Antiochos (1986). As a check, we have repeated the calculations made by

those authors and find that the earlier results are fully corroborated.

This gives us confidence that both codes are working correctly. Most of

the present calculations were performed on a Macintosh II work

station.

II. NUMERICAL RESULTS

The results of two of our calculations are shown in Figure 3.

Figure 3a shows the contours a = constant in the x-y plane for the

normal field distribution Byl(x,O) in the case of no ,..rrents (Zmax = 0).

Figure 3b shows the corresponding contours for the stressed case x= 4,

Zmax = 10. These contours are the projections of field lines onto the x-y

plane, and therefore give the "end-on" view of field lines. Figure 3c gives

the same contours in the y-z plane, showing the "side view" of the field

lines. Figure 3d shows the contours in the x-z plane, representing the

"top view" of the field lines.

We note that, as found earlier by Sturrock and Woodbury (1967),

* the effect of the shear displacement is to "inflate" the magnetic field

configuration, since the development of the Bz component has the same

effect as gas pressure. In this context, it is interesting to note that

13z = constant along each field line (see Appendix A).

Careful readers will see that, for the a = 0.4 contour in Figure 3d,

the endpoints are not the furthest removed points from the z-axis. This

implies that Bz changes sign along the field line, in contradiction with

the result of Appendix A. We can attribute this discrepancy to the finite

0' " % * - - -%-"e*' % -% * % °''" • " % ' " """ " '"" " ' % ' - W"
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grid nature of our calculations. In general, finite-difference equations

do not yield exactly the same solution as the continuous equations from

which they are derived, and since Appendix A is based on the

continuous equations, it applies only approximately to the model

calculations.

In Figure 4, we give the total energy of the magnetic field as a

function of shear for the five different configurations we have

considered. Panels on the left side of the figure are for the normal field

distribution Byl(x,O), and panels on the right side are for the normal

field distribution By2 (x,O). The width of the shear zone, xj, decreases

*_ from 8 in the top row, to 4 in the middle row, to 2 at the bottom. As

expected, the energy is found to increase monotonically with shear. in

* .ieach case the maximum displacement (Zmax = 16) produces a stressed

field with roughly 3 times the energy of the corresponding potential

S-- . field. There is an important difference between these curves and the

"- corresponding curve for the case of cylindrical symmetry given in

Wang, Sturrock, and Antiochos (1986). In the case of cylindrical

'-" symmetry, the total energy tends asymptotically to the (finite) energy of

the open field. Such behavior is not possible in the present geometry,

* since the energy of the corresponding open-field configuration is

infinite.

Low (1982), following Raadu (1971) and Low and Nakagawa (1975),

has considered a sequence of solltions of the force-free equations, for

fields of translational symmetry. Any sequence is defined by a

-" generating function," related to the functional form of the dependence

of B, upon a. Such a sequence is quite different from the sequences we

consider, in which the shear displacement has a specified functional

I..'
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dependence on the transverse variable x. Hence, it is not surprising that

the evolution of a sequence in Low's model is quite different from the

evolution of a sequence in our's. Whereas one of Low's sequences

typically ends at a state of finite energy, our sequences do not terminate,

and the energy becomes arbitrarily large.

An important difference between the present models and the

earlier numerical models of Sturrock and Woodbury (1967) and Yang,

Sturrock, and Antiochos (1986) is that there is, in the present models, an

outer shell of magnetic flux that suffers little or no shearing

displacement. These field lines therefore tend to restrain the tendency of

_ the inner flux region to expand into an open configuration. As a result,

the outer boundary has a much smaller effect on these calculations than

it had in the previous cases.

We can estimate the effect of the outer boundary on the field

energy by multiplying the mean value of energy density at the boundary

(B2 / 8n) by the volume of the computational box. This crudely represents~p
the work that would be done by the field in expanding to infinity. The

energy uncertainty obtained in this way reaches an extreme value of 4 %

for the most severly sheared cases in which x, = 8 (and in which the

* outer shell of unsheared flux is smallest). The uncertainty is less than

1 % for most of the models, however, so we can be confident that we

overestimate the energy by at most a few percent.

IV. EMPIRICAL MODEL FOR MAGNETIC ENERGY VARIATION

A single numerical calculation yields an exact answer to a single

question, but an analytical solution shows how the quantity of interest

depends on the parameters characterizing the problem. It would be very

I 11
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convenient to have an understanding of the variation of the total

magnetic energy as a function of shear and, for this reason, we have

attempted to find a simple functional form that approximates the form of

the curves shown in Figure 4.

If S is a normalized measure of the shear, such as Z / W, where Z

is a measure of the shear and W is a measure of the width of the bipolar

region, we expect that the total magnetic energy U can be expressed as

U=U 0 F(S) , (4.1)

where Uo is the total energy of the current-free field that corresponds to

S = 0. Hence F(O) = 1. It is also clear that F must be an even function of S

so that it is expressible as a function of S2.

We now consider the asymptotic state of the magnetic field for very

large values of S. As S tends to infinity, the magnetic field is driven

more and more towards an open configuration. For some very large

value of S, we expect that the field is substantially open as far as a radius

r = KS, but remains substantially dipolar in form for r > KS. Hence for

r < KS, B - r-1 , whereas for r > KS, B - r-2 .

* One may therefore estimate the dominant contribution to the

magnetic energy by calculating the energy of the magnetic field as far as

.- zr =KS:

r=KKS

U(S) fc r dr 1 (4.2)
81, r2

ro

O5
Sd2
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Hence we expect that, for large values of S,

U(S) - In S . (4.3)

A simple function that has this asymptotic behavior, is an even

function of S, and reduces to Uo for S = 0, is

U(S) = Uo [ 1 + a ln(1 + b S2)] . (4.4)

In Table 1, we give the calculated values of U / Uo for the normal

field distribution Byi(x,0) with xl = 4 and Zmax in the range 0 to 16.

Adopting S = Zmax / x0 = Zmax / 4 (so that 2 Zmax is the maximum

displacement of any field line, and 2xo is a measure of the total width of

the field), the values of S are as shown in the table. We have made a

least-squares fit to these data and found that the best fit is obtained for

a = 0.8156, b = 0.8318. With these values, the formula (4.4) yields the

estimates of U / Uo shown in the third column of Table 1. We see that the

average discrepancy between the estimated and actual values of the

energy is only 0.4 %. This good agreement is evident in Figure 4 (middle

* left panel) where the fit to the model data is shown as a solid curve.

In Table 2 we list the values of a and b determined for each of the

five configurations we have modeled. As can be seen from the average

6 discrepancies provided in column 5 and from the close agreement in

I". Figure 4, the quality of the fits is exceptional in each case. It would

seem from this result that the energy of a line dipole can always be

expressed as a simple function of shear in terms of the two parameters a

and b.

pI
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The pair (a, b) is unique to each configuration, however, and it

would be useful to have a single function with universal parameters

a*and b* that is able to describe all situations. The values of a and b

given in Table 2 are not too widely varied, but is easy to imagine other

configurations for which at least one of the parameters would be well

outside the range in the table. For example, if the shear were localized

in a region where the flux is weak, say in the extreme outer region of

distribution Byl(x,O), then the energy of the field would be only a very

weak function of S. Clearly, therefore, a general formula relating

energy to shear must somehow weight the shear according to the

*amount of flux that is affected.
-* As a first attempt, we replotted the energy data using the abscissa

S$1 = Z1 / W1, where

00

Z= y(x,O) [By(x,O)] 2 dx (4.5)

and
00

W1 = J x [By(x,O)]2 dx . (4.6)

Figure 5 shows the resulting plot for all five configurations

combined. It is obvious that this particular definition of shear does not

produce a good energy-shear correlation.

We note that, for a given amount of shearing displacement (Az),

the field is more highly distorted near the dipole axis than away from it.

That is, the projection of a field line onto the photosphere makes a

smaller angle with the dipole axis for field lines that originate closer to

%

01%
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the axis. Since greater distortion usually implies greater energy, it is

reasonable to suppose that a definition of shear that takes this into

account might produce a tighter energy-shear correlation. We have

therefore replotted the data using the following two abscissas:

* j (x,0)
1<'" ) [By(x,0)]

2 dx

0 DO (4.7)
J [By(x,0)] 2 dx

and

1/2

f )(,O)][By(x,0Y1
2 dx

S3 =0 (4.8)

[By(x,0)] 2 dx

We find that the energy-shear correlation using S2 is improved,

but that the correlation using S3 is very satisfactory. This is shown in

A' Figures 6 and 7. A least-squares fit of equation (4.4) to the data,

..2 substituting S3 for S, yields the values a = 0.7684 and b = 0.5530. The

-: average discrepancy between the data and fit is 3.5%.

It is interesting also to note from equation (4.4) that the force

opposing the shear varies with S (or S 3 ) as:

F - I 2abUO
1dS 1 + bS2
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so that it varies linearly with S for small values of S and inversely with S

for large values of S. The maximum value of F is abl/2Uo at S = b - 1/ 2 .

Since the normal field By is being held constant at the photosphere, the

above variation in F must be attributed to a progressive change in the

value Bz, the component of field in the direction of shear: B7 first

increases and then decreases with S.

V. DISCUSSION

We have seen from Section III that relative shearing motion of the

two sides of a line dipole leads to "inflation" of the magnetic-field pattern

and to a progressive increase in the stored magnetic energy. For such a

model, the magnetic energy can, in principle, become arbitrarily large.

Hence the free energy of a stressed magnetic field in an active region

may in fact be considerably larger than the energy of the corresponding
p

potential field. In this respect, the linear dipole configuration differs

significantly from cylindrically symmetric models, such as the one

considered by Wang, Sturrock, and Antiochos (1986).

We have also found that a simple analytical model provides a good

fit to all of our calculated fields. Combining equations (4.4) and (4.8) this

* model can be represented by the formula

U(Zmax) = U 0 [1 + a* ln(1 + b Zmax2 ) , (6.1)

where

A'p
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00

S= b* x Byx03 d, (6.2)

[By(x,0)]2 dx

x (x,0)
xO = Zmax , (6.3)

and

a* = 0.7684, b*= 0.5530.

Note that a* is identical to a in equation (4.4). This is consistent with the

small range of a values in Table 2.

The fact that the magnetic energy, as a function of shear, may be

expressed in a simple functional form suggests that it may be possible to

find a simple approximate representation of the magnetic field itself.

If formula (6.1) is indeed general, as our results would suggest,

then the total energy contained in any line dipole field can be easily

determined as a function of the shear amplitude, Zmax. One needs only

specify the photospheric quantities By(x,0) and fRx,0)--the normal field

the potential field, Uo, is given uniquely by By(x,0).)

This formula is useful for studying which types of photospheric

conditions give rise to the greatest free energy in the corona. Ultimately,

this energy may be used to power solar flares, coronal mass ejections,

etc. We see from formula (6.2) that the magnetic energy is relatively

more enhanced if the shearing displacement occurs: (1) where the

mor I-
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normal field is strongest; (2) in the inner region of the dipole, close to the

axis; or (3) over a large fraction of the dipole area. These situations are

of course not mutually exclusive.

We have seen that wholly different boundary conditions can

produce very similar results. In our computed models the energy

increases obtained with x, = 2 and x, = 8 are comparable, even though

.. 'x, = 2 optimizes the second factor listed above while x, = 8 optimizes the

third. In general, the relative importance of these various factors will

depend on the details of the flux distribution in question. It is mostly a

coincidence that the b values in Table 2 fall within a fairly small range

of each other.

One attractive feature of our formula is that all of the quantities

can, in principle, be measured. The normal component of field in the

photosphere is routinely and fairly accurately measured by present-day

longitudinal magnetographs. The form of the shear displacement is

not so easily determined, on the other hand. Vector magnetographs are

used for this purpose, but the observations are at this time both difficult

to make and difficult to interpret (e.g., Skumanich and Lites 1987;
'.C

Ronan, Mickey, and Orrall 1987). Perhaps the situation will improve

• with further developements in theory and with the new generation of

instruments planned by HAO and the University of Hawaii, among

others.

One could infer the form of the shear from features observed in H-

alpha and in X-rays. The usefulness of H-alpha observations is limited,

however, in that dark fibrils and filaments are seen only in the weak

field corridors at the centers of active regions and in the surrounding

weak field areas (Klimchuk 1987). X-ray images would provide valuable

oJ



information on the shear in the more important strong field regions, but

our next opportunity for systematic observations will have to await the

launch of Solar-A in 1991.

And finally, we end on a cautionary note. Our study has thus far

been two-dimensional, yet active regions on the Sun, even those that

resemble line dipoles, are not of infinite extent. To study more realistic

configurations it will be necessary to use three-dimensional modelling,

which is something we plan for the near future.

This work was supported in part by Office of Naval Research

Contract N00014-85-K-0111, by NASA Grant NGL 05-020-272, and as part

of the Solar-A collaboration under NASA Contract NAS8-37334 with

Lockheed Palo Alto Research Laboratories.
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APPEND X A

Demonstration that B, = const. along a field line.

We see from equation (2.3) that B may be expressed as

B' - B 3. (A.1)

Hence the current density 7 may be expressed as

--* 1 dcBz d}Bz _cc 2otcc~(B DB IaaC
J 4 i "y ' " d x'" x2  ay2  (A .2)

The Lorentz force is zero for a force-free field, so the expression for the

z-component of this force leads to the relation

aBz aa aBz a
. - = 0. (A.3)

ax Dy dy ax

This shows that the projections of VBz and Va in the x-y plane are

parallel. However, Bz and a are independent of z, so VBz is parallel to

Va. We see from equation (2.1) that B • Va = 0. Hence B• VBz =0,

showing that Bz = const. along a field line.
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TABLE 1

Comparison of Computed Energy (U / Uo) and Best Fit (Uf / UO)

For the Case ByI(x,0), xj = 4

S U/Uo Uf/UO

0.0 1.000 1.000
0.5 1.171 1.154

1.0 1.507 1.494

1.5 1.859 1.860

2.0 2.185 2.195

2.5 2.477 2.488

3.0 2.737 2.744

3.5 2.970 2.970

4.0 3.180 3.170

S
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TABLE 2

Energy vs. Shear Fit Parameters

Normal Field xj a b Average

Distribution Discrepancy

By1 (x,O) 8 0.7437 0.4755 0.44 %

ByI(x,O) 4 0.8156 0.8318 0.43 %

By1 (X,0) 2 0.6354 0.6234 0.82 %

By2(x,0) 8 0.7752 0.4544 0.47 %

By 2 (X,0) 4 0.7489 0.6071 0.49 %
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FIGURE CAPTIONS

Figure 1.--Assumed distributions of the photospheric normal field as a

function of distance from the dipole axis. The distributions are anti-

symmetric about the dipole axis, so that positive By on one side of the

dipole corresponds to negative By on the other side.

. Figure 2.--Assumed distributions of photospheric shear as a function of

distance from the dipole axis. The shear is anti-symmetric about the

* dipole axis, so that on one side of the dipole the footpoints are displaced

in the positive z-direction and on the other side of the dipole they are

displaced in the negative z-direction.

Figure 3.--Various views of the field lines, labeled by the value of a, for

two different force-free field models having the normal field distribution

Byi(x,0) and shear function parameter x1 = 4: (a) projections of field

lines on the x-y plane, giving the "end-on" view, for the current-free case

-, Zmax = 0; (b) the same as (a), but for the stressed case Zmax = 10; (c)

'  projections on the y-z plane, giving the "side-on" view, for the case Zmax

.= 10; and (d) projections on the x-z plane, giving the "top" view, for the

case Zmax = 10.

Figure 4.--Energy versus shear plots for five different magnetic

configurations distinguished by the normal field distribution and shear

function parameter x1. The ordinate is the normalized energy U / U0 ,

where U0 is the energy of the potential field, and the abscissa is the

7O- J
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normalized shear S = Zmax / 4. Solid dots are from the model

calculations and curves are from least-squares fits of equation (4.4).

Figure 5.--Plot of energy versus shear (Si) for all five magnetic

configurations combined. The abscissa S1 is defined by equations (4.5)

and (4.6). Open symbols are for normal field distribution Byl(x,O) and

solid symbols are for distribution By2 (X,O). Triangles, circles, and

squares represent the cases x, = 8, 4, and 2, respectively.

Figure 6.--Plot of energy versus shear (S 2 ) for all five magnetic

I. configurations combined. The abscissa S 2 is defined by equation (4.7).

Open symbols are for normal field distribution Byj(x,0) and solid

symbols are for distribution By2 (X,O). Triangles, circles, and squares

represent the cases x, = 8, 4, and 2, respectively.

Figure 7.--Plot of energy versus shear (S 3 ) for all five magnetic

configurations combined. The abscissa S 3 is defined by equation (4.8).

Open symbols are for normal field distribution Byl(x,O) and solid

symbols are for distribution By2(x,O). Triangles, circles, and squares

* represent the cases x, = 8, 4, and 2, respectively. The curve is a least-

squares of equation (6.1).
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